Winners and Losers of Marketplace Lending: Evidence from Borrower Credit Dynamics

Sudheer Chava Nikhil Paradkar

Georgia Ernest Scheller Jr. Tech College of Business

September 7, 2018

Consumer Lending in the United States

- Consumer lending constitutes significant share of U.S. economy
 - Accounts for \$3.6 trillion as of 2017
- Banking intermediaries serve as primary providers of credit to most consumers
 - Specialize in screening and monitoring, and enjoy economies of scale in reducing information asymmetry (Diamond, 1984; Ramakrishnan and Thakor, 1984)
- Consumer lending market rife with inefficiencies
 - Over-reliance on crude, formulaic methods to determine creditworthiness
 - ► Significant informational frictions
 - ► High interest rates on loans, even for high credit quality applicants (Stango and Zinman, 2009)
 - Post-crisis capital requirements and regulatory restrictions further limiting credit access

Rise of FinTech in Consumer Credit Markets

- ▶ Banking inefficiencies creating entry avenues for innovators
 - Changes in consumer attitudes and technological improvements also possible contributors
- Marketplace lending (MPL) platforms specializing in peer-to-peer ("P2P") lending in the consumer credit market
- Reliant on online marketing and underwriting platforms
 - Traditional banks not involved in loan origination process
- ► Alternative loan pricing schemes

Features of MPL Platforms

- Process relies on matching individual borrowers to prospective investor-lenders
 - ► Information asymmetry reduced through credit-bureau generated borrower reports made available by MPL
 - Aids in possibly overcoming the principal-agent problem (Jensen and Meckling, 1976)
- Disbursed MPL funds are unsecured
 - MPL platform plays role of broker; lenders bear full risk of borrower defaults
- MPL loans used primarily for debt consolidation
 - Over 70% of loan applicants on MPL platforms in US state "expensive debt consolidation" as primary reason for requiring MPL funds (source: Prosper and Lending Club)
- No mechanism in place to ensure that borrowed MPL funds are used towards reasons stated on loan applications

- ▶ Question 1: Is stated aim of debt consolidation misreported on MPL loan applications?
 - MPI s lack enforcement mechanisms.
- ▶ Question 2: Does borrowing from MPLs alter credit profile characteristics?
 - Default rates, credit card utilization, credit scores, etc.
- Question 3: Identify winners and losers of MPLs
 - Cross-sectional analysis
 - Identify mechanisms that determine benefits or costs imposed on MPL borrowers
 - Facilitated by cohort-level analysis comparing borrowers to non-borrowers

Preview of Findings

- Credit card balances decline 47% in the quarter of MPL loan origination, before reversing trend
- Average credit score jumps by approximately 19 points in the quarter of MPL loan origination
- Findings suggest that credit card limits increase in months following MPL loan origination, especially for subprime borrowers
- Credit card default rates spike, especially for subprime MPL borrowers
- ► Evidence suggests that bank lending actions are triggered by MPL-induced improvement in borrowers' credit scores

Related Literature

- Lending decisions within online platforms:
 - ► Freedman and Jin (2011), Lin et al. (2013), Iyer et al. (2015), Hildebrand et al. (2016)
- Determinants of interest rates on MPL loans:
 - ▶ Race and age (Pope and Sydnor, 2011); gender (Barasinska, 2011; Pope and Sydnor, 2011); beauty (Ravina, 2012); stereotypes (Hasan et al., 2018); non-verifiable disclosures (Michels, 2012); group leader bids (Hildebrand et al., 2016)
- Credit expansion vs. credit substitution?
 - ▶ Jagtiani and Lemieux (2017), Wolfe and Yoo (2018), Buchak et al. (2017)
- ▶ Impact of MPL credit on consumers:
 - ▶ Balyuk (2018), Demyanyk et al. (2017)
- ▶ Importance of credit scores in bank-lending relationships:
 - ► Keys et al. (2010), Rajan et al. (2015), Agarwal et al. (2018), Liberman et al. (2017)

Credit bureau trades file:

- Information on the various trades opened by an individual (auto, mortgage, student loans, bankcard, etc.)
- Used to identify individuals who have borrowed through fintech lenders
- Credit bureau credit file:
 - Balance information at monthly frequency for various kinds of trade lines
 - Monthly utilization ratios
 - Monthly credit scores
- Demographic file:
 - Occupation
 - Education status
 - Income

	MPL Borrowers	National	Homeowners	
Panel A: Credit Characteristics				
# Open Trades	10.49	4.68	7.58	
# Auto Trades	1.02	0.66	0.84	
# Mortgage Trades	0.86	0.79	1.07	
# Student Loan Trades	2.23	1.66	1.49	
# Credit Card Trades	3.84	1.97	2.74	
Vantage Score	656.44	675.47	733.84	
Total Balance	\$232,463	\$208,195	\$310,142	
Auto Balance	\$20,659	\$17,038	\$20,648	
Mortgage Balance	\$189,597	\$186,237	\$274,244	
Student Loan Balance	\$24,425	\$19,122	\$20,210	
Credit Card Balance	\$9,821	\$4,197	\$5,994	
Credit Card Utilization	69.42%	30.89%	28.55%	
Panel B: Income Characteristics				
Monthly Income	\$3,602	\$3,437	\$5,232	
Debt-to-Income	41.03%	27.82%	45.39%	

Empirical Approach

- Examine how MPL loans change credit profiles of borrowers
- Utilize event study methodology similar to Agarwal et al. (2016), and Agarwal et al. (2017):

$$In(Y_{i,t}) = \sum_{\tau \neq -1} \beta_{\tau} Quarter_{i,\tau} + \gamma \mathbf{X}_{i,t} + \alpha_i + \delta_t + \epsilon_{i,t}$$
 (1)

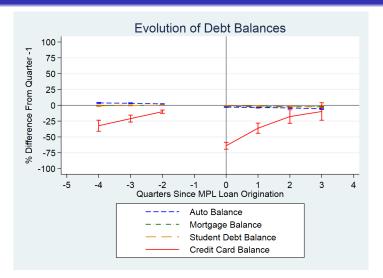
- Definitions:
 - ▶ Quarter_1 (Quarter_1) refers to months [-3,-1] (months [+4,+6]) in relation to month of MPL loan origination
 - ightharpoonup au varies from -4 to +3, with au = -1 omitted
 - Individual- and year-quarter fixed effects
 - ► SEs double clustered at individual- and year-quarter levels
 - $\mathbf{X}_{i,t}$: Monthly income, educational attainment, occupation, and homeownership status

Question #1: What type of debt is consolidated?

- Possible strategic misreporting due to non-verifiable nature of reasons stated on MPL loan applications
 - Moreover, non-verifiable reasons affect loan pricing on MPL platforms (Michels, 2012)
- What kind of debt is consolidated?
 - Comparison of average interest rates:
 - ► Auto (4.21% on 60 month loans)
 - ▶ Mortgage (4.125% for 15-year FRM, 3.875% on 5/1 ARM)
 - ▶ Student loans (4.5–7%)
 - Credit cards (15–20%)
 - Inefficient consolidation can leave borrowers worse off

Types of Debt Consolidated

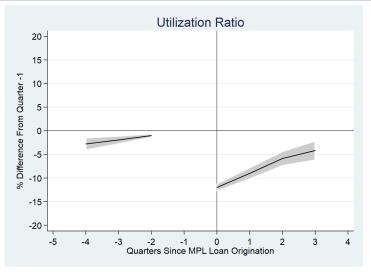
Evolution of Debt Balances



Question #2: Long-run effects on credit profile?

- Are other credit profile characteristics affected by MPL loan-induced credit card debt consolidation?
- ▶ How long do these credit profile changes persist?

Credit Card Utilization



Discussion

Conclusions

Introduction

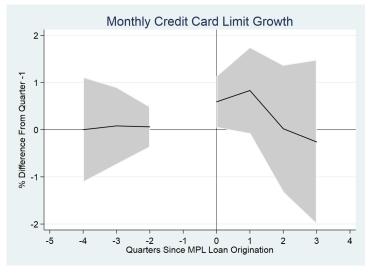
Determinants of Utilization

$$\textit{Utilization} = \frac{\textit{Balance}}{\textit{Limit}}$$

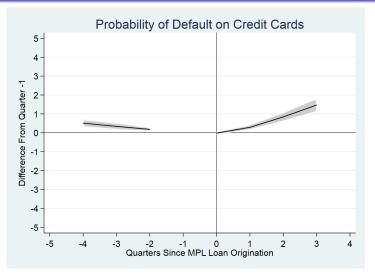
- Our findings indicate that at the 1-year mark following MPL loan origination:
 - ▶ Balance ≈
 - ▶ Utilization ↓
 - ▶ Suggests that: Limits ↑

Introduction

Δ (Monthly Credit Card Limits)

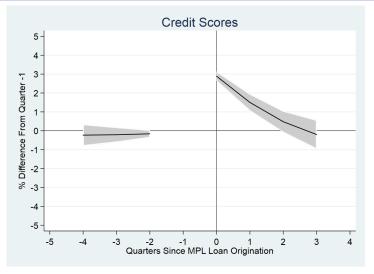


$\mathbb{P}(\mathsf{Credit}\;\mathsf{Card}\;\mathsf{Default})$



Credit Scores

Introduction



Alternative Channels?

- ▶ Job/Income loss
 - Results cannot be explained by change in employment or income of the MPL borrower
- Regional economic factors
 - Pattern of findings not driven by region-specific shocks exogenous to the MPL borrowers
 - ▶ Robust to 5-digit ZIP × Year-Quarter fixed effects

Identification – Matched-Sample Analysis

- Creating cohorts of borrowers and non-borrowers:
 - Identify non-MPL borrowers from same 5-digit (or 9-digit) ZIP as MPL borrower
 - Identify subset of non-MPL borrowing neighbors with need for credit
 - Identify neighbors with identical ex-ante credit and income profile trends in calendar time
 - Use kNN algorithm to identify most similar neighbor to MPL borrower
- Successful in identifying cohorts of borrowers and neighbors with similiar dynamics in credit scores, utilization, debt balances, etc.
- ▶ Results robust to matched-sample analysis
- Lingering concerns of selection on observables

Identification – Natural Experiments

- Identifying 'shocks' to geographic regions that could affect MPL share:
 - Changes in broadband access
 - ▶ Rollout of Google Fiber (used in Fuster et al. (2018))
 - ► Bank branch closures
- Currently ongoing

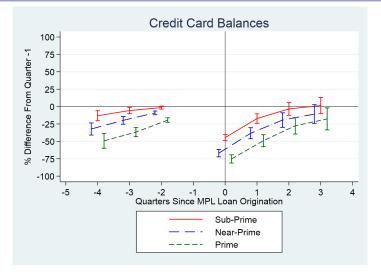
Differential Patterns based on Credit Status

- Analysis thus far assumes that all MPL borrowers are of equal sophistication
- MPL borrowers differ on financial sophistication, however
- Sophistication proxied through credit score in the month prior to MPL loan origination:

Sophistication Level	Score Range Pre-MPL Origination	Percentage of Total Sample
Subprime	[300, 620)	23%
Near-Prime	[620, 680)	50%
Prime	[680, 850]	27%

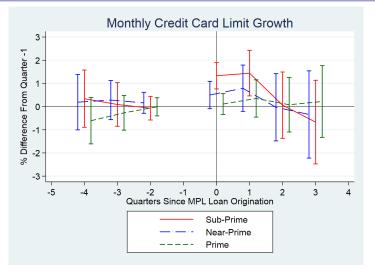
Introduction

Credit Status Cuts - Credit Card Balances

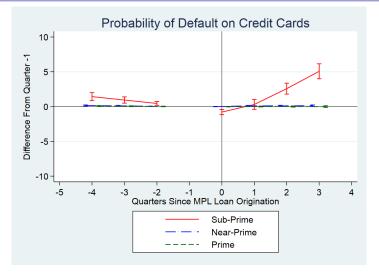


Introduction

Credit Status Cuts – Δ (Credit Card Limits)



Credit Status Cuts – ℙ(Credit Card Default)



Improvement in MPL Borrower Creditworthiness?

- Earlier findings suggest that MPL borrowers experience increase in average credit scores in quarter of MPL loan origination
 - ▶ Scores increase by 2.89% (\approx 19 points) for entire sample
- Findings also show that MPL borrowers experience stronger credit card limit growth immediately following origination
- Are increases in credit card limits caused by MPL-induced improvement in credit scores?
 - Studied through cohort-level analysis

Empirical Specification

Introduction

- Use kNN algorithm to match MPL borrowers to non-borrowing neighbors in same 5-digit (or 9-digit) ZIP with identical ex ante credit and income dynamics
- Specification relies on comparing borrowers to non-borrowers within cohort:

$$log\left(\frac{AvgScore_{[+1,+3]}}{AvgScore_{[-3,-1]}}\right) = MPL_Borrower_{i,c} + \gamma \mathbf{X}_{i,c} + \alpha_c + \epsilon_{i,c}$$
(2)

Instrumental variables setup:

$$log\left(\frac{AvgCCLimits_{[+1,+3]}}{AvgCCLimits_{[-3,-1]}}\right) = log\left(\frac{AvgScore_{[+1,+3]}}{AvgScore_{[-3,-1]}}\right) + \gamma \mathbf{X}_{i,c}$$

$$(3)$$

$$+ \alpha_c + \epsilon_{i,c}$$

Conclusions

Do MPLs alter the perceived creditworthiness of borrowers?

Introduction

Impact of MPL Loans on Subprime Borrower Creditworthiness

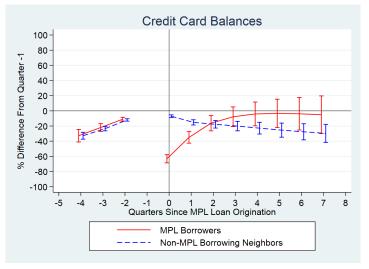
	1st Stage	_	IV	OLS
	$\overline{\Delta(Score)}$	$\mathbb{I}(\mathit{Score}_{post}>=620)$	$\overline{\Delta(\text{CC Limits})}$	Δ (CC Limits)
MPL Borrower	5.43*** (0.09)	34.80*** (0.27)		
$\Delta(Score)$			0.89*** (0.05)	0.32*** (0.03)
Observations	228051	228051	228051	228051
Adjusted R ²	0.16	0.17	0.01	0.03
Fixed Effects	С	С	С	С
Controls	\checkmark	✓	✓	✓
F-Stat (Excl Instr.)			7140	

► Near-Prime Cohorts

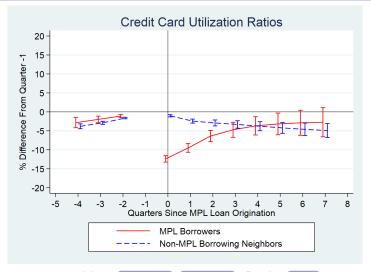
Conclusions

- ▶ Using credit bureau data, we analyze the credit profile evolution of borrowers on a major U.S. MPL
- Borrowers use funds to consolidate expensive credit card debt
 - Lowers credit utilization ratios, elevates credit scores
 - Consolidation phase is short-lived
 - Induces increased credit card limits from traditional banks
 - Significant increases in credit card default rates, especially for subprime MPL borrowers
- Results indicate that MPL-induced improvements in credit scores trigger bank lending actions
- Paper highlights how cascading of information between MPL platforms and banks through credit scores can leave some borrowers worse off

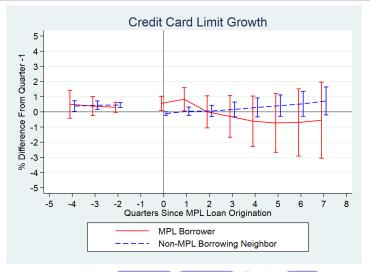
Matched Sample Comparison – Credit Card Balances



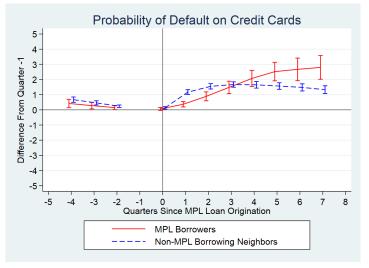
Matched Sample Comparison – Credit Card Utilization



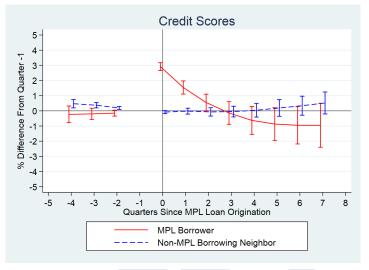
Matched Sample Comparison - Credit Card Limit Growth



Matched Sample Comparison – $\mathbb{P}(Credit Card Default)$



Matched Sample Comparison – Credit Scores



Impact of MPL Loans on Near-Prime Borrower Creditworthiness

	1st Stage	IV	OLS	
	$\overline{\Delta(Score)}$	$\overline{\Delta(\text{CC Limits})}$	$\overline{\Delta(\text{CC Limits})}$	$\mathbb{I}(\mathit{Score}_{post}>=680)$
MPL Borrower	4.25***			32.70***
	(0.04)			(0.31)
$\Delta(Score)$		0.11***	0.05***	
, ,		(0.01)	(0.02)	
Observations	523674	523674	523674	523674
Adjusted R ²	0.13	0.01	0.03	0.17
Fixed Effects	C	C	C	С
Controls	✓	✓	✓	✓
F-Stat (Excl Instr.)		11600		